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Results of the stability analysis of a catalytic reaction with nonisothermal diffusion and with 
a simple kinetic equation of the Langmuir-Hinshelwood type (I) were used for determining 
minimum values of the critical Lewis number Lw**. The possibility is discussed of their further 
possible lowering by including other factors. 

Among results of the stability analyses of the behaviour of a porous catalyst particle jnside which 
an exothermic catalytic reaction of the first order with respect to the reactant takes place, there 
was a finding that undamped concentration and temperature oscillations could arise only at con
siderably high values of the Lewis numberl - 3. Such high values are not realistic for catalytic 
systems known so farl. Even the inclusion of further effects as for example of the external heat 
and mass transfer and of the change in the number of moles during a catalytic reaction4 did not 
result in a substantial lowering of critical values of the number. It was foundS on the other hand 
that instabilities of this type can arise even at isothermal conditions if a bimolecular catalytic 
reaction is described by a kinetic equation rendering possible a decrease in the reaction rate with 
increasing concentration (e.g. some equations of the, Langmuir-Hinshelwood type). 

Hence, a possibility arises of analysing the stability in a case tending towards the 
instability from the reasons of both the reaction being exothermic and the concentra
tion dependence of the reaction rate. However, as the case of a nonisothermal bi
molecular reaction is described by a system of at least three partial differential equa
tions whose stability analysis is very difficult, we shall limit ourselves to a simpler 
case of a monomolecular exothermic reaction with a kinetic equation fo r the so 
cal1ed "dual site" mechanisms according to the Langmuir- Hinshelwood classification. 
With this kinetic equation, pure concentration-type instabilities are possible even 

in an isothermal case6
• 

Basic relations. By the method employed for example in previous workss
,6, the 

nonisothermal nonstationary internal diffusion accompanied by a catalytic reaction 
A ~' products obeying a simple rate equation of the Langmuir-Hinshelwood type (1) 
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(1) 

can be described for a catalyst particle in the form of an infinite slab of the width 2L 
by a system of two partial differential equations (2) - (3): 

(2) 

(3) 

with boundary conditions 

x = 0: ay/ax = aa/ax = 0; x = 1 : y = 1: a = O. (3a) 

The dimensionless variables and parameters are given by relations (4): 

y == CA/CAi a == (T - Ti) y/Ti x == z/L ! == DAt/L2
, 

ML == LJ[RA(Y = 1)/DAcA;J B == KAcAi Lw == )'/DA(!cP = a/DA , (4) 

f3 == (-AH) DAcAd)'Ti y == E/RTi . 

By using the linearisation principle according to Hlavacek, Kubicek and Marek t •4 .
s.7 , 

the system of Eqs (2) - (3) can be transformed into two ordinary differential Eqs (5), 
(6) for suitable (e.g . mean) values of the dimensionless concentration and temperature 
y,e 

(5) 

(6) 

with an initial condition 

! = 0, y = Yo, a = a . (7) 

The system of Eqs (5)-(6) can be analysed by the first Ljapunov method for the 
asymptotic stability of singular points by the method described in a previous works. 
The quantities Sand Q determining the character of separate singular points in the 
sense of the Poincare classification are given by the expressions 

S == Ys(1 + Bys) res - (1 + a s/yy] - (1 - Ys) (1 - Bys) (1 + e sfyY, (8) 
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Q == LW[ es - IJ - [1 + (1 - Ys)(l - BYs)] (9) 
(1 + es/1')2 Yl1 + Bys) , 

where Prater's relation 8 (10) holds between the quantities Ys and es in the stationary 
case (index s) 

es = fl1'(1 - Ys) . (10) 

The value of Ys[Ys E (0, 1)] may be determined by solving the equation describing the stationary 
process, which can be derived from relations (5) and (6) by setting their l.h.s. equal to zero 

(~)\l -y) = M2 !s(l + B)2 ex [ py(l - Ys) ]. 
2 s L (1 + BYs)2 P 1 + P(l - Ys) (11) 

The effectiveness factor in the stationary case is then 

- Ys(1 + B)2 [PY(1 - Ys) ] 

lis = (1 + BYs)2 exp 1 + P(J - Ys) . 
(12) 

Multiplicity of the solution for the stationary case. As it was shown several 
times 1 ,5, the condition of the boundary of saddle singular solutions S = Q is at the 
same time a condition determining the boundary between regions of unique or 
multiple solutions of the stationary problem. From this condition, the so called 
critical values of the adsorption parameter B* may be obtained for given values 
of fl and l' parameters such that the stationary problem has only one solution for 
B < B*. The B*(fl, 1') dependence is depicted in Fig. 1; a limiting value of B* = 8 
for the isothermal case (fly = 0) agrees well with previous results9

• From this figure, 
we can see that with increasing thermal effects of the reaction (increasing fly), the 

value of the critical parameter B* decreases. 

Stability analysis of singular points. In the stability analysis of the system of two 
coupled ordinary differential Eqs (5)-(6), we shall limit ourselves only to the analysis 
of the stability condition of non-saddle singular points. Non-saddle points (S < 0) 
are asymptotically stable for Q < 0, i.e. if it holds 

Lw { fl1'(1 - Ys) _ 1} _ [1 + (1 - .Vs) (1 - BYs)] < O. (13) 
[1 + fl(1 - Ys)]2 Ys(1 + Bys) 

For positive values of the Lewis number, which only have a sense, and for 

{fl1'(l - Ys)/[l + fl(1 - Ys)]2} - 1 > 0, (14) 

condition (13) may be rearranged to the form 

Lw < Lw*, (I 5) 
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For Lw > 0 and for 

{PY(l - Y.)/[1 + 13(1 - y.)]2} - 1 < 0, (16) 

the non-saddle points are always stable. 

The critical value of the Lewis number Lw* is defined by Eq. (17): 

Lw* == 1 + [(1 - y.)(l - BY.)]/[Y.(l + By.)] . 
{.8y(1 - Y.)/[l + 13(1 - y.)]2} - 1 

(17) 

When applying the derived criteria, it is necessary to know the region of y. values, 
in which non-saddle type singular points are lying. This region may be determined 
by solving the relation S = 0 (Eq. (8)); the solution obtained also limits the region 
of multiple-valued stationary solutions. One of a possible situation is depicted 
schematically in Fig. 2, where besides the curve Lw*(y.), the dependence ML = ML(Y.) 
is plotted according to Eq. (11). 

The Lw* - y. plane splits into existence regions of solutions with saddle (vertical 
band denoted by S) and non-saddle (denoted by N) character; simultaneously, the 
region of unique solutions of the function Y.(ML) is shown (denotes by U) as well as 

FIG. 1 

Dependence of the Critical Value of the 
Parameter B* on Parameters p and l' 

1 PO, 2 P 0'025, 3 P 0'05,4 P 0·1. 

is 1 

SM SM 

FIG. 2 

Schema tical Dependences of Lw* and ML 
on the Mean Concentration Ys for a Constant 
Set of Parameters B, P, and l' 

N Region of non-saddle type solutions, 
S region of saddle type solutions, U region 
of unique solutions, M region where the 
function Y.(ML ) is multiplevalued. 
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the multiplicity region (denoted by M). The curve Lw*(ys) separates further these 
regions into parts NU1, NU2, NM1, NM2 and SM.* In the SM region, there are only 
saddle points which are always unstable; in the NU2 part, non-saddle points exist 
which represent always stable unique solutions. Solutions in the NM1 and NM2 
regions represent one of multiple solutions; this solution is stable in the NM2 region 
and unstable in the NM1 region. As points in the NU1 part form the only possible 
unstable solution, limiting cycles arise in this case according to Bendixon's theorem10 

(the system becomes stabilized in a state of undamped oscillations of both the mean 
concentration and mean temperature around the Ys' Bs singular point). 

An unstable solution of the non-saddle type is thus possible only in the NU1 and 
NM1 regions; hence, the possibility of an instability occurrence depends on the value 
of the lowest Lewis number Lw** which is determined by the intersection of the 
Lw*(ys) curve with the boundary of the non-saddle points region. This is clearly 
visible in Fig. 3, where dependences are plotted of the critical Lewis number on Ys 
for several values of the B parameter and for constant values of parameters f3 and y. 

The part of the Lw*(ys) curve lying in the non-saddle solution region is shown as full, 
while that lying in the saddle point region as dashed. As regards the case with an 
unique solution (curve 1 in Fig. 3), the Lw** value is given by the coordinate of the 
minimum of the Lw*(ys) curve. 

8 -

Lw ' 

4 -

c.:' \ "",,""" -. 

.. .... , 
0 1 02 0·3 1s 0 4 

FIG. 3 

Dependence of the Critical Lewis Number 
Lw* ony. 

p 0'05, y 40, 1 B 2, 2 B 5, 3 B 8. The 
region of saddle type solutions is dashed . 

Lw" \L 
2~ -______________________ 2 ___ 1 

. 3 

0·5 1 10 

FIG. 4 

Dependence of the Lowest Lewis Number 
Lw** on the Parameter B 

1 P 0,1, y 40, 2 P 0,05, y 40, 3 P 0'1, y 20. 

Vertical asymptotes of the Lw*(ys) curve pass through the Ys = 0 point and through 
a point Ys which is the solution of an equation separating the regions described by relations (14) 

and (16). 
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Minimum values of the Lewis number Lw**. As it is seen in Fig. 3, the Lw** value 
decreases with increasing B; adsorption effects thus shift the instability region towards 
lower, i.e. more realistic values. The B-Lw** dependence may be constructed also 
by simultaneous numerical ~olving Eq. (17) with the conditions S = 0 (Eq. (8)); 
this condition determines the geometrical locus of the so called bifurcation points, 
i.e. of points for which the ys(ML) dependence just branches. The obtained dependence 
of Lw** on the B parameter is depicted for constant p, y pairs in Fig. 4. The existence 
region of unique solutions for a given B, p, y set is dashed. 

For a B parameter growing to infinity, the curves in Fig. 4 approach the lowest 
(asymptotic) value which, for py/(l + P)2 > 1 (cf. (14)), may be determined from 
relation (18) 

lim Lw** = [ 
py J- 1 

+ (1 + py - 1 ... (18) 

(Table I). (For Py/(1 + P)2 < 1, the non-saddle solutions are always stable). It 
follows from relation (18) that the lowest value of the critical Lewis number Lw** 
which may be reached for very strong temperature and adsorption effects of the 
reaction (high values of B, p, y), equals unity. Even such magnitudes of the Lewis 
number are unrealistic for common catalytic processes 1. It is however substantial 
that for a non isothermal process, a lowering of critical Lewis numbers towards 
a value of Lw** '~ 1 was accomplished by a single factor, i.e. by the form of the 
employed kinetic equation of the Langmuir-Hinshelwood type. For the case of an 
exothermic reaction with power-law kinetics4, it was necessary for reaching minimum 
values of critical Lewis numbers Lw** equal to several units to consider besides 
a nonisothermal reaction in the porous particle still other factors (heat and mass 
transfer inside the particle and effects caused by changes in the number of mol 
during the reaction)4. Thus, the inclusion of these and similar other effects into 
a Langmuir-Hinshelwood kinetics mudel could lower the critical Lewis numbers 
Lw** still further, eventually down to values which would be realistic in some catalytic 
processes (e.g. Lw ~O'l1 for the ethylene hydrogenation 1

). It seems further that the 
minimum critical Lewis number would approach the region of realistic values the 

TABLE I 

Limiting Values ofLw** for B -+ if.) 

P 0·05 0·05 0·10 0·10 0·10 0·20 0·20 0·20 
y 30 40 20 30 40 20 30 40 
Lw~! 3·77 2·23 2·53 1·68 1·43 1·71 1·32 1·24 
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most by including the external heat and mass transfer, the effect of the change of the 
mol numbers during the reaction and primarily by including the simultaneous 
diffusion of two reactants5 during an exothermic reaction. 

The approximative linearisation procedure1 ,4 , S,7 used for a replacement of the system of par
tial differential Eqs (2) - (3) by the system of ordinary differential Eqs (5)-(6) loads the results 
obtained with some uncertainty. In number of cases it was, however, found4 ,7 ,11 that the results 
concerning stability obtained by this method are in very good agreement with results obtained 
by solving the non-simplified problems. 

LIST OF SYMBOLS 

a thermal conductivity 
A reactant 
B parameter, Eq. (4) 
cA concentration of component A 
cp specific heat of catalyst particle 
D A effective diffusion coefficient of component A 
E activation energy of reaction 
D.H reaction heat 
k rate constant of catalytic reaction 
KA adsorption coefficient of component A 
L half-width of catalyst slab 
Lw Lewis number, Eq. (4) 
Lw* critical value of Lewis number, Eq. (17) 
Lw** lowest value of critical Lewis number in the region of nonsaddle solutions 
ML diffusion modulus, Eq. (4) . 
RA reaction rate 
R gas constant 
1 time 
T absolute temperature 
x dimensionless coordinate, Eq. (4) 
y dimensionless concentration, Eq. (4) 
Y mean dimensionless concentration of component A 

length coordinate 
P parameter, Eq. (4) 

parameter, Eq. (4) 
'ii. effectiveness factor in steady case, Eq. (12) 
e dimensionless temperature 
e mean dimensionless temperature 
A. effective thermal conductivity of catalyst 

catalyst density 
dimensionless time, Eq. (4) 

Indices 

for conditions at the outer catalyst surface 
o for the initial state 

for the stationary solution 
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